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Background

Health care consumption data is being increasingly used in
medical research:

I Answering new, more relevant and detailed clinical
questions,

but. . .

I New and significant methodological challenges:
1. Informative censoring;
2. Informative observation process;
3. Reporting (REPORT guidelines, Benchimol et al., 2015);
4. . . .
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Health care consumption data
In health care records:

1. Observation times are likely correlated with disease
severity;

2. Dropout (censoring) is likely informative.
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Informative observation process
Common assumption with traditional methods for analysing
longitudinal data:

The mechanism that controls the observation time is
independent of disease severity

I Joint models for longitudinal-survival data can account for
an informative censoring process;

I Research is scarce on whether inference is valid when the
observation process is informative.

If the observation plan is dynamic, we must account for it
in the analysis. Otherwise, two types of bias can arise:
selection bias and confounding.
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Bias structure

Selection bias:

Nt Lt Zt Nt+1

Yt+1U

Confounding:

Nt L∗
t Zt Yt+1

Lt U

N observation indicator, L covariates, L∗ latest measured
covariates, Z exposure, Y outcome variable, U unmeasured
factors.
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State-of-the-art
Some approaches to deal with informative observation times
have appeared in the literature. For instance:

I Joint models with random effects (e.g. Liu et al., 2008);
I Methods based on inverse intensity of visit weighting

[IIVW] (Robins et al., 1995; Hernán et al., 2009);
I Simple methods such as adjusting for the number of

measurements (e.g. Goldstein et al., 2016).
However:

1. there is no real, comprehensive comparison of the
performance of different methods in the literature;

2. low awareness of the potential for bias and no guidance
(Farzanfar et al., 2017)
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A generalised joint model framework
We can fit a generalised multi-equation joint model (Crowther,
2017) to model informative visit times and the longitudinal
outcome jointly:

ri = r0(t) exp(wiβ + ui) (1)
yij|(Nij(t) = 1) = zijα + γui + vi + εij (2)

I i and j index individuals and observations, respectively;
I observations of Yij recorded at each Nij(t) = 1;
I zij and wi covariate vectors;
I ui, vi individual-specific, normally distributed random

effects with E(u) = E(v) = 0;
I γ association parameter.
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A simulation study
Aims: what are the consequences of ignoring the visiting
process in practice? How do di�erent methods perform?

True data-generating model (informed by Liu et al., 2008):

ri = r0(t) exp(Ziβ + ui)

yij|(dNij(t) = 1) = α0 + Ziα1 + tijα2 + γui + vi + εij

I binary treatment Zi;
I β = 1, α0 = 0, α1 = 1, α2 = 0.2;
I σ2u = 1, σ2v = 0.5, σ2ε = 1;
I r0(t): Weibull with shape p = 2 and scale λ = {0.08, 0.80};
I γ = {−1.50,−0.50, 0.00};
I 200 individuals, independent censoring from Unif(6, 12).
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Models included in our comparison

1. True model;
2. A mixed effects model, adjusting for the total number of

measurements;
3. A mixed effects model, adjusting for the cumulative

number of measurements up to the current time (as a
time-varying covariate);

4. A mixed effects model disregarding the observation
process;

5. A model fit using generalised estimating equations [GEE]
and IIVW (Van Ness et al., 2009).
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Results: informative observation process
γ = −1.50 γ = −0.50 γ = 0.00

0 20 40 60 0 20 40 60 0 20 40 60
0.000

0.050

0.100

0.150

0.200

0.250

Number of observations per individual

D
en

si
ty

λ :
0.08

0.80

Treatment

Not treated

Treated

γ = −1.50 γ = −0.50 γ = 0.00

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0
0.000

0.400

0.800

1.200

Gap time between observations

D
en

si
ty

ag475@leicester.ac.uk 9 of 15

mailto:ag475@leicester.ac.uk


Results: bias of treatment e�ect
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Results: bias of �xed intercept
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Results: bias of time e�ect
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Results: bias of variance of random intercept
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Conclusions
Take-home messages:

1. Failing to account for a dynamic visiting process yields
biased results because of selection bias or confounding;

2. There is a variety of methods that can be utilised to account
for an informative visiting process, but they are severely
underutilised.

Extension of current work:
I Application to a variety of real data examples;
I Exploring more complex model structures (time-dependent

frailties, . . . );
I Formalising the joint model in a causal inference

framework;
I Additional methods such as multiple outputation

(Pullenayegum, 2016).
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