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Motivation

To fully understand the prognosis of breast cancer, we need
information on regional and distant metastasis.

Past work focussed on regional or distant metastasis alone.
We want to develop a joint model for the two combined.

This is joint work with Keith Humphreys, who talked about the background of this
project in more detail last week.

1 of 25



Motivation

To fully understand the prognosis of breast cancer, we need
information on regional and distant metastasis.
Past work focussed on regional or distant metastasis alone.

We want to develop a joint model for the two combined.

This is joint work with Keith Humphreys, who talked about the background of this
project in more detail last week.

1 of 25



Motivation

To fully understand the prognosis of breast cancer, we need
information on regional and distant metastasis.
Past work focussed on regional or distant metastasis alone.
We want to develop a joint model for the two combined.

This is joint work with Keith Humphreys, who talked about the background of this
project in more detail last week.

1 of 25



Time to Metastasis and Affected Lymph Nodes are Correlated
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Modelling Tumour Growth
Exponential growth of the tumour:

𝑉 (𝑡|𝑟) = 𝑉Cell exp(𝑡/𝑟)

A random effect on 𝑟 to allow for heterogeneity:

𝑓𝑅(𝑟) = 𝜏𝜏1
2

Γ(𝜏1)𝑟𝜏1−1 exp(−𝜏2𝑟), 𝑟 ≥ 0,

Finally, in the absence of screening, the rate of symptomatic detection at time
𝑇det = 𝑡 is proportional to the size of the tumour:

𝑃(𝑇det ∈ [𝑡, 𝑡 + 𝑑𝑡)|𝑇det ≥ 𝑡, 𝑅 = 𝑟) = 𝜂𝑉 (𝑡, 𝑟)𝑑𝑡 + 𝑜(𝑑𝑡), 𝑡 ≥ 𝑡0

3 of 25



Modelling Tumour Growth
Exponential growth of the tumour:

𝑉 (𝑡|𝑟) = 𝑉Cell exp(𝑡/𝑟)

A random effect on 𝑟 to allow for heterogeneity:

𝑓𝑅(𝑟) = 𝜏𝜏1
2

Γ(𝜏1)𝑟𝜏1−1 exp(−𝜏2𝑟), 𝑟 ≥ 0,

Finally, in the absence of screening, the rate of symptomatic detection at time
𝑇det = 𝑡 is proportional to the size of the tumour:

𝑃(𝑇det ∈ [𝑡, 𝑡 + 𝑑𝑡)|𝑇det ≥ 𝑡, 𝑅 = 𝑟) = 𝜂𝑉 (𝑡, 𝑟)𝑑𝑡 + 𝑜(𝑑𝑡), 𝑡 ≥ 𝑡0

3 of 25



Modelling Tumour Growth
Exponential growth of the tumour:

𝑉 (𝑡|𝑟) = 𝑉Cell exp(𝑡/𝑟)

A random effect on 𝑟 to allow for heterogeneity:

𝑓𝑅(𝑟) = 𝜏𝜏1
2

Γ(𝜏1)𝑟𝜏1−1 exp(−𝜏2𝑟), 𝑟 ≥ 0,

Finally, in the absence of screening, the rate of symptomatic detection at time
𝑇det = 𝑡 is proportional to the size of the tumour:

𝑃(𝑇det ∈ [𝑡, 𝑡 + 𝑑𝑡)|𝑇det ≥ 𝑡, 𝑅 = 𝑟) = 𝜂𝑉 (𝑡, 𝑟)𝑑𝑡 + 𝑜(𝑑𝑡), 𝑡 ≥ 𝑡0

3 of 25



Modelling Spread to the Lymph Nodes (1)
This is based on previous work by Isheden et al.

The model for spread to the lymph nodes (seeding) is based on a
non-homogeneous Poisson Process with intensity function

𝜆(𝑡, 𝑟, 𝑠∗) = 𝑠∗𝐷(𝑡, 𝑟)𝑘𝑁 𝐷′(𝑡, 𝑟),

where 𝐷(𝑡, 𝑟) is the number of times the cells in the tumour have divided and
𝐷′(𝑡, 𝑟) is the rate of cell division in the tumour.

Under the assumption of a time to clinical detectability of 𝑡0, the corresponding
cumulative intensity function for detectable lymph node metastases is

Λ(𝑡 − 𝑡0, 𝑟, 𝑠) = 𝑠 [log (𝑉 (𝑡, 𝑟)
𝑉0

)]
𝑘𝑁+1

, 𝑡 ≥ 𝑡0 (1)

with 𝑠 = 𝑠∗/[(𝑘𝑁 + 1)(log 2)𝑘𝑁+1].

4 of 25



Modelling Spread to the Lymph Nodes (1)
This is based on previous work by Isheden et al.

The model for spread to the lymph nodes (seeding) is based on a
non-homogeneous Poisson Process with intensity function

𝜆(𝑡, 𝑟, 𝑠∗) = 𝑠∗𝐷(𝑡, 𝑟)𝑘𝑁 𝐷′(𝑡, 𝑟),

where 𝐷(𝑡, 𝑟) is the number of times the cells in the tumour have divided and
𝐷′(𝑡, 𝑟) is the rate of cell division in the tumour.
Under the assumption of a time to clinical detectability of 𝑡0, the corresponding
cumulative intensity function for detectable lymph node metastases is

Λ(𝑡 − 𝑡0, 𝑟, 𝑠) = 𝑠 [log (𝑉 (𝑡, 𝑟)
𝑉0

)]
𝑘𝑁+1

, 𝑡 ≥ 𝑡0 (1)

with 𝑠 = 𝑠∗/[(𝑘𝑁 + 1)(log 2)𝑘𝑁+1].
4 of 25



Modelling Spread to the Lymph Nodes (2)

Assuming a Gamma(𝛾1, 𝛾2) random effect on 𝑠 to allow for heterogeneity in
spread, Isheden et al. showed that the probability of 𝑁 = 𝑛 clinically detectable
lymph nodes is independent of both 𝑆 and 𝑅.

This follows a negative binomial distribution 𝑁𝐵(𝑙, 𝑝) with size 𝑙 = 𝛾1 and
probability 𝑝 = 1 − [(log(𝑣/𝑉0)𝑘𝑁+1]/[(log(𝑣/𝑉0))𝑘𝑁+1 + 𝛾2].
The probability of having 𝑁 = 𝑛 affected lymph nodes given a tumour volume
𝑉 = 𝑣 is:

𝑃(𝑁 = 𝑛|𝑉 = 𝑣) = Γ(𝑛 + 𝑙)
Γ(𝑙)𝑛! 𝑝𝑙(1 − 𝑝)𝑛,
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Modelling Distant Metastatic Spread (1)

The model for time to distant metastatic spread is also based on a similar
non-homogeneous Poisson process but with parameters 𝜎∗ and 𝑘𝑊 . In previous
work we derived a survival model for time to detection of distant metastasis;
here, we extend that model to allow for between-subject heterogeneity.

Some key model assumptions:

• Metastatic seeding completely stops at diagnosis of the primary;

• Already seeded, successful colonies are not affected by surgery following
diagnosis/treatment;

• Times from seeding to detection are the individual specific times 𝑡0.
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Modelling Distant Metastatic Spread (2)

t0

Vcell V0 Vdet

tdet

0 3 6 9 12 15
Time from onset of primary tumour

Diagnosis of 
primary tumour

t

3-3-6-9

w

0
Time from diagnosis of primary tumour

Successful 
metastasis 

seeding

Tumour onset

t0

Growth of 
the primary 
tumour

Distant 
metastatic 
spread

Detection 
of distant 

metastases

7 of 25



Modelling Distant Metastatic Spread (3)

We can derive the following density and survival functions for time to detection
of distant metastasis:

𝑓𝑊|𝑉 =𝑣,𝑅=𝑟(𝑤) = 𝑘𝑊 + 1
𝑟 (𝑤

𝑟 + log 𝑣
𝑉0

)
𝑘𝑊 𝜔1𝜔2

𝜔1

[𝜔2 + (𝑤
𝑟 + log 𝑣

𝑉0
)𝑘𝑊 +1]

𝜔1+1 ,

∀ 0 ≤ 𝑤 ≤ 𝑟 log(𝑉0/𝑉Cell).

𝑆𝑊|𝑉 =𝑣,𝑅=𝑟(𝑤) =
⎧{
⎨{⎩

{𝜔2/ [𝜔2 + (𝑤
𝑟 + log 𝑣

𝑉0
)𝑘𝑊 +1]}

𝜔1
if 0 ≤ 𝑤 ≤ 𝑟 log(𝑉0/𝑉Cell)

{𝜔2/ [𝜔2 + (log 𝑣
𝑉Cell

)𝑘𝑊 +1]}
𝜔1

if 𝑤 > 𝑟 log(𝑉0/𝑉Cell)
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Joint Modelling
First, we need to define the joint distribution of the number of affected lymph
nodes 𝑁 = 𝑛 and the time to first detected distant metastasis 𝑊 = 𝑤, given
tumour size at detection 𝑉 = 𝑣 and inverse growth rate 𝑅 = 𝑟:

𝑓𝑁,𝑊|𝑉 =𝑣,𝑅=𝑟(𝑛, 𝑤)

There are several ways to connect the two processes. For instance, we could
specify correlated random effects for the spread rates; however, this is
computationally demanding.

Instead, we take a copula modelling approach:

• We have already specified the marginal distributions of 𝑁 and 𝑊 ,
• It is reasonable in the absence of a clear underlying biological model.
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Copula

A copula is defined as a multivariate cumulative distribution function (CDF) for
which the marginal probability distributions are uniform on the interval [0, 1].
Formally, if 𝐹 is a bivariate CDF with univariate CDF margins 𝐹1, 𝐹2 then,
according to Sklar’s theorem, for every bivariate distribution there exists a copula
representation such that

𝐹(𝑥1, 𝑥2|𝜃) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2); 𝜃)

for a certain parameter (or vector of parameters) 𝜃.
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Joint Copula Modelling
Let 𝐶 be a bivariate copula and 𝐹𝑁|𝑉 =𝑣,𝑅=𝑟(𝑛) and 𝐹𝑊|𝑉 =𝑣,𝑅=𝑟(𝑤) be the
cumulative distribution functions of affected lymph nodes at detection and time
to distant metastasis, respectively.

The joint bivariate cumulative distribution can therefore be defined using the
copula 𝐶 as

𝐹𝑁,𝑊|𝑉 =𝑣,𝑅=𝑟(𝑛, 𝑤) = 𝐶(𝐹𝑁|𝑉 =𝑣,𝑅=𝑟(𝑛), 𝐹𝑊|𝑉 =𝑣,𝑅=𝑟(𝑤))

The joint bivariate density function follows as:

𝑓𝑁,𝑊|𝑉 =𝑣,𝑅=𝑟(𝑛, 𝑤) =
𝜕2 𝐶(𝐹𝑁|𝑉 =𝑣,𝑅=𝑟(𝑛), 𝐹𝑊|𝑉 =𝑣,𝑅=𝑟(𝑤))

𝜕𝑛 𝜕𝑤
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Possible Copula Formulations
We focus on Achimedean copulae:

Name of Copula Bivariate Copula 𝐶(𝑢, 𝑣; 𝜃) Domain of 𝜃 Possible Correlation 𝜏

Ali–Mikhail–Haq 𝑢𝑣
1−𝜃(1−𝑢)(1−𝑣) 𝜃 ∈ [−1, 1] 𝜏 ∈ [−0.18, 0.33]

Clayton [max {𝑢−𝜃 + 𝑣−𝜃 − 1; 0}]−1/𝜃 𝜃 ∈ [−1, ∞)\{0} 𝜏 ∈ [−1, 1]\0
Frank −1

𝜃 log [1 + (exp(−𝜃𝑢)−1)(exp(−𝜃𝑣)−1)
exp(−𝜃)−1 ] 𝜃 ∈ ℝ\{0} 𝜏 ∈ [−1, 1]\0

Gumbel exp [− ((− log(𝑢))𝜃 + (− log(𝑣))𝜃)1/𝜃] 𝜃 ∈ [1, ∞) 𝜏 ∈ [0, 1]
Product 𝑢𝑣 — 𝜏 = 0

Joe 1 − [(1 − 𝑢)𝜃 + (1 − 𝑣)𝜃 − (1 − 𝑢)𝜃(1 − 𝑣)𝜃]1/𝜃 𝜃 ∈ [1, ∞) 𝜏 ∈ [0, 1]

Another alternative is the Gaussian copula:

𝐶Gaussian(𝑢, 𝑣; 𝜃) = Φ2 (Φ−1(𝑢), Φ−1(𝑣); 𝜃) ,
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Likelihood Function
In the absence of screening:

𝐿No Screening = 𝑓𝑉det
(𝑣) ∫

𝑅
𝑃(𝑁 = 𝑛, 𝑊 = 𝑤|𝑉det = 𝑣, 𝑅 = 𝑟)𝑓𝑅|𝑉det=𝑣(𝑟) 𝑑𝑟

For a screened population:

𝐿Screen Detection ∝ 𝑃(𝐵0|𝑉 = 𝑣)𝑃(𝑉 = 𝑣, 𝑁 = 𝑛, 𝑊 = 𝑤|𝐴)𝑃(𝐵𝑐|𝐴, 𝑉 = 𝑣, 𝑁 = 𝑛, 𝑊 = 𝑤)

𝐿Symptomatic Detection ∝ 𝑃(𝑉det = 𝑣, 𝑁 = 𝑛, 𝑊 = 𝑤|𝐴)𝑃(𝐵𝑐|𝐴, 𝑉det = 𝑣, 𝑁 = 𝑛, 𝑊 = 𝑤)

I will skip the details here, but please come talk to us if interested!
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Model-Based Predictions
After fitting the joint copula model we can obtain a variety of predictions. Among
others:

• Probability of having detected distant metastases at diagnosis of the primary
tumour given size of the tumour and number of affected lymph nodes;

• Probability of having latent/undiagnosed distant metastases given size of
the tumour and number of affected lymph nodes at diagnosis of the primary
tumour;

• Survival probability at any time 𝑤∗ > 0 for the event of distant metastasis,
conditional on characteristics observed at diagnosis and on being free of
distant metastasis at that time;

• More standard quantities such as tumour doubling time, etc.

14 of 25



Model-Based Predictions
After fitting the joint copula model we can obtain a variety of predictions. Among
others:

• Probability of having detected distant metastases at diagnosis of the primary
tumour given size of the tumour and number of affected lymph nodes;

• Probability of having latent/undiagnosed distant metastases given size of
the tumour and number of affected lymph nodes at diagnosis of the primary
tumour;

• Survival probability at any time 𝑤∗ > 0 for the event of distant metastasis,
conditional on characteristics observed at diagnosis and on being free of
distant metastasis at that time;

• More standard quantities such as tumour doubling time, etc.

14 of 25



Model-Based Predictions
After fitting the joint copula model we can obtain a variety of predictions. Among
others:

• Probability of having detected distant metastases at diagnosis of the primary
tumour given size of the tumour and number of affected lymph nodes;

• Probability of having latent/undiagnosed distant metastases given size of
the tumour and number of affected lymph nodes at diagnosis of the primary
tumour;

• Survival probability at any time 𝑤∗ > 0 for the event of distant metastasis,
conditional on characteristics observed at diagnosis and on being free of
distant metastasis at that time;

• More standard quantities such as tumour doubling time, etc.

14 of 25



Model-Based Predictions
After fitting the joint copula model we can obtain a variety of predictions. Among
others:

• Probability of having detected distant metastases at diagnosis of the primary
tumour given size of the tumour and number of affected lymph nodes;

• Probability of having latent/undiagnosed distant metastases given size of
the tumour and number of affected lymph nodes at diagnosis of the primary
tumour;

• Survival probability at any time 𝑤∗ > 0 for the event of distant metastasis,
conditional on characteristics observed at diagnosis and on being free of
distant metastasis at that time;

• More standard quantities such as tumour doubling time, etc.

14 of 25



Application: Data
We analyse data from CAHRES, which consists of incident cases of
postmenopausal breast cancer recorded in a case-control setting:

• Women born and residing in Sweden,
• Aged 50 – 74,
• Diagnosed with an incident primary invasive breast cancer between October
1st 1993 and March 31st 1995.

Furthermore,

• This was linked to data from the Swedish Cancer Registry and the
Stockholm-Gotland Breast Cancer Registry, and

• An extension of the original case-control study collected mammographic
images and screening histories from mammography screening units and
radiology departments.
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Application: Some Statistics

• 1581 women, of which:
• 1019 (64.4%) detected through screening
• 562 (35.6%) detected symptomatically

• Median tumour diameter at detection of 15 mm (I.Q.I. 10 – 22 mm);

• 1091 women (69.0%) had no affected lymph nodes at detection, 170 (10.8%)
had one, 91 (5.8%) had two, 229 women (14.4%) had three or more;

• One woman had detected distant metastasis at the time of diagnosis of the
primary tumour. During follow-up, 288 more women (18.2%) were diagnosed
with distant metastasis;

• Median follow-up time was 5.50 years (95% C.I.: 5.41 – 5.59 years);

• Kendall’s 𝜏 correlation between the lymph nodes and the times to distant
metastasis was -0.15 (if discretising time: -0.17).

16 of 25



Application: Choice of the Copula Function

Frank Clayton AMH Independence

Log-likelihood -6,380.31 -6,417.57 -6,394.91 -6,443.43
Kendall’s 𝜏 -0.33 -0.09 -0.18 —
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Application: Comparing Copulae
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Application: Time to Distant Metastasis Predictions

Copula: Frank Copula: Independence
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Application: Standardised Survival Difference
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Application: Cured Fraction

• Marginally over the overall observed covariates distribution: 0.697

• Marginally over number of affected lymph nodes:
• Zero lymph nodes: 0.805
• One lymph node: 0.553
• Two lymph nodes: 0.479

This estimate is similar to that reported by Dal Maso et al. from the
EUROCARE-5 study: 0.66 for breast cancers diagnosed in 2000.
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Application: Microsimulation

Finally, we use the joint copula model to showcase its potential for
microsimulation purposes, as it can connect the latent natural history of a
tumour with the risk of future events.

For this purpose, we simulate 10 million tumours from the best fitting model (i.e.,
assuming a Frank copula) and we assess what the 5-years risk of distant
metastasis would be in the counterfactual scenario of early detection.

This quantity is likely affected by lead-time bias, but given that we know the
counterfactuals, we can provide a lead-time corrected estimate as well.
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Application: Early Detection
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Application: Detecting Smaller Cancers
Lymph Nodes: 0 Lymph Nodes: 1 Lymph Nodes: 2
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Wrap Up

1. We have introduced a joint, copula-based model for the latent growth of
breast cancer, detection, spread to the lymph nodes, and distant metastatic
spread.

2. We have shown that this model was able to capture relevant patterns in data.

3. We have demonstrated how a model of this kind could be used in
microsimulation studies of breast cancer.

4. The model is of course not perfect, but it provides solid building blocks on
which we could develop and extend upon, e.g., by directly modelling
cancer-specific death within a unified framework.
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